
J
H
E
P
1
0
(
2
0
0
7
)
0
0
7

Published by Institute of Physics Publishing for SISSA

Received: July 27, 2007

Accepted: September 24, 2007

Published: October 1, 2007

Alpha-prime corrections to space-like branes

Shibaji Roy and Harvendra Singh

Saha Institute of Nuclear Physics,

1/AF Bidhannagar, Kolkata 700064, India

E-mail: shibaji.roy@saha.ac.in h.singh@saha.ac.in
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M/string theories having isometries ISO(p+1) × SO(d−p−2, 1), where d = 11, 10 respec-

tively and have singularities at t = 0. In [1], we found that the asymptotically flat S-branes

have the structure of generalized Kasner geometry near t = 0. In this work we evaluate

higher order α′ corrections perturbatively to the heterotic string Kasner backgrounds to

probe the singularity at t = 0. We generally find that the perturbative corrections do not

permit us to reach the singular point, as the supergravity framework fails near t ∼ √
α
′

blurring the origin of space-like singularities. This is analogous to the concept of stretched

horizons in the case of black holes.
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1. Introduction

M/String theories are known to admit a variety of time dependent solutions. Space-like

or S-branes [2] are certain class of such solutions possessing an isometry ISO(p + 1) ×
SO(9 − p, 1) for M-theory and ISO(p + 1) × SO(8 − p, 1) for string theories. They can be

asymptotically non-flat [3] as well as flat [4, 5].1 The asymptotically flat Sp-branes were

constructed in ref. [5] and were found [1] to have a space-like or cosmological singularity

at t = 0. As time dependent solutions, S-branes are particularly interesting as they might

help us to understand the time dependent processes in string theory like brane-antibrane

or non-BPS brane decay through rolling tachyon [7 – 9]. They are also interesting from the

cosmological point of view and in particular they are known to give rise to four-dimensional

accelerating cosmologies [1, 10 – 13]. But the acceleration in this case is transient, i.e., it

occurs only for a finite interval of time. This feature persists for both asymptotically non-

flat and flat solutions [1]. But, because of its transient nature, it does not give rise to

high enough e-folding necessary for realistic cosmology. However, the inclusion of higher

curvature terms improves the situation and some such studies have been reported in [14, 15]

and more recently in [16].

In this paper we will be interested in another aspect of the asymptotically flat S-brane

solutions, namely, the cosmological singularity and see the effect of stringy corrections to

it. In fact the recent interest in perturbative corrections to string theory has revealed

many new insights in the understanding of various aspects of black hole singularities [17 –

21]. The leading world sheet corrections in some supersymmetric black hole geometries,

which violate cosmic censorship and have degenerate horizons with vanishing areas, in fact

1The relations between these two classes of S-brane solutions have been discussed in [6].
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become finite when α′ corrections are included. It has been the belief in string theory that

generally the space and time singularities must get smoothed out when relevant stringy

corrections are taken into account. This has partly been tested in case of (small) black holes

where quantum corrections are under control due to the large amount of supersymmetry.

However, in non-supersymmetric cases it is rather tricky, as the quantum corrections can

be very large and even uncontrolled. But recent study in the case of extremal but non-

supersymmetric black holes have led to not very different physics than in the case of

supersymmetric ones [22, 23].

As we mentioned our main interest in this work is to study the stringy corrections

to the S-brane background particularly near the singular point. But we should keep in

mind that the time dependent backgrounds are non-supersymmetric and so the question

of perturbative corrections is rather convoluted. The asymptotically flat S-branes were

studied previously in [1] and this has provided some interesting new insights, particularly,

we found that the near t = 0 limit of the S-brane solutions leads to generic Kasner type

geometries [24]. Like S-branes, Kasner geometries are inherently singular at t = 0 and

therefore are interesting cosmological solutions. Also they are much simpler than full S-

brane solutions and make a good example for the theoretical understanding of space-like

singularities. It would be interesting to study the stringy corrections to these Kasner

geometries2 and see what effect they have on the space-like singularity of this background.

The paper is organised as follows. In section-2 we review the t → 0 limit of S-brane

solutions and the resultant generalised Kasner cosmologies. We present the special case

of S2-branes. In section-3 we obtain the α′ corrections to the Kasner backgrounds in a

heterotic string set up. We will consider two cases, namely, in the first case the lowest

order dilaton will be taken to be constant while in the second case it will be non-constant.

The results are summarised in section-4.

2. Generalized Kasner backgrounds

In [1] the generalized Kasner backgrounds were obtained as the near ‘horizon’ or t → 0 limit

of the S-brane solutions of type II string theory in the lowest order (without α′ correction).

The ten dimensional action we considered was,

S =
1

2κ2

∫

d10x
√
−g

[

R − 1

2
(∂φ)2 − eaφ

2 · n!
F 2

[n]

]

(2.1)

where κ is related to the ten dimensional Newton’s constant, g = det (gµν), with gµν being

the Einstein-frame metric, R is the scalar curvature, φ is the dilaton and F[n] is the n-

form field strength. Also a is the dilaton coupling given by a2 = 4 − 6(n − 1)/(n + 2)

for maximal supergravities. Depending on the value of n we can obtain various Sp-brane

(where p = 8 − n) solution from the equations of motion following from (2.1) with the

appropriate ansatz for the metric and the form-field. We, however, will be looking at

S2-brane solution and so we will put n = 6. The reason for this is that the S2-brane

2Stringy corrections to the bosonic string Kasner backgrounds were studied in [25]. We thank Qasem

Exirifird for informing us about this.
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has 3-dimensional Euclidean world-volume and so, including the time direction we get the

4-dimensional world whose cosmology we are interested in. Therefore, when dilaton is

non-constant a = −1/2 and when dilaton is constant, a will be put to zero. Note that

a = 0 does not correspond to maximal supergravity as we mentioned earlier. The S2-brane

solution of the above action has the form [5, 1],

ds2 = F
12
5χ g

1
5

(

−dt2

g
+ t2dH2

6

)

+ F− 4
χ

3
∑

i=1

(dxi)2

e2φ = F− 32
5χ

agδ , F[6] = bVol(H6) (2.2)

where

F = gα/2 cos2 θ + g−β/2 sin2 θ

g = 1 + 4ω5/t5 (2.3)

In the above, α, β, θ, ω and δ are integration constants and b is the charge parameter.

Also H6 is the 6-dimensional hyperbolic space and dH2
6 is its line element while Vol(H6)

is its volume form. Also in the above χ = 6 + 8a2/5 and so, χ = 32/5 when a = −1/2 i.e.

the dilaton is non-constant and χ = 6 when dilaton is constant. The paramaters in the

solution just mentioned are related as,

b =

√

160

χ
(α + β)ω5 sin 2θ

α = ±
√

6χ − 15δ2

16
+

aδ

2

β = ±
√

6χ − 15δ2

16
− aδ

2
(2.4)

Now it is easy to check from (2.3) that at early time i.e. as t → 0, the function F (t) behaves

as F (t) ∼ t−5α/2. Note that both the upper and the lower signs of α and β gives exactly

same behavior of F (t). So, after some rescaling of coordinates and redefining the time

coordinate by t(−3α/χ)+2dt → dt we can rewrite the configuration (2.2) as follows,

ds2 = −dt2 + t
− 10α

3(α−χ)

3
∑

i=1

(dxi)2 + t
(6α−χ)
3(α−χ) dR2

6

e2φ ∼ t
−16aα+5δχ

3(α−χ) F[6] = 0 (2.5)

where ‘∼’ means upto a constant which can be absorbed by a constant shift of the dilaton.

Note that while obtaining eq.(2.5) from eq.(2.2) we had to replace dH2
6 by dR2

6, i.e. the flat

space and this is because near t = 0, the overall radius of the hyperbolic space becomes

very large as can be seen from (2.2) and so effectively this space becomes flat. Also, be-

cause of that reason the charge parameter b must vanish identically which implies that in

that limit the parameter θ must vanish. The parameter ω can be absorbed into the coor-

dinate rescaling and the redefinition of the dilaton field. So, out of the three independent
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parameters ω, θ and δ, the solution near t = 0 is characterized by a single parameter δ (or

α which is related to δ by (2.4)). By defining the various exponents of t appearing in the

metric and the dilaton in (2.5) as

ds2 = −dt2 + t2p
3

∑

i=1

(dxi)2 + t2qdR2
6

e2φ ∼ t2γ (2.6)

where

p = − 5α

3(α − χ)
, q =

6α − χ

6(α − χ)
, γ =

−16aα + 5δχ

6(α − χ)
(2.7)

we find that they satisfy,

3p + 6q = 1, and 3p2 + 6q2 = 1 − 1

2
γ2 (2.8)

This is precisely the generalized Kasner geometry [24] one obtains as the near ‘horizon’

or near t = 0 limit of the asymptotically flat S2-brane solution of type II string theory.

We remark that in the above a can take only two values, namely, a = 0 (when dilaton is

constant in the lowest order) and a = −1/2 (when dilaton is non-constant in the lowest

order). Consequently, χ can also take two values, namely, χ = 6 (when dilaton is constant)

and χ = 32/5 (when dilaton is non-constant). Therefore, when dilaton is constant in

the lowest order we have α = ±3/2 and γ = 0. Now since there is no dilaton field the

background in this case reduces to Kasner geometry. Putting these values in (2.7) we find

that p and q take the following two sets of values,

(i) p = 5/9, q = −1/9

(ii) p = −1/3, q = 1/3 (2.9)

We will study the stringy corrections to these backgrounds in the next section. Next,

we discuss the case when dilaton is non-constant at the lowest order. In this case as we

mentioned a = −1/2 and χ = 32/5. Now since in this case we have two relations (2.8)

with three unknowns p, q and γ, there will be infinite number of solutions. We will discuss

two simple cases and their stringy corrections in the next section. The first case is

(a) p = q = 1/9, and γ = −4/3 (2.10)

and the second case is

(b) p =
7 − 8

√
3

39
, q =

3 + 4
√

3

39
and γ = −4

(

3 + 4
√

3

39

)

(2.11)

These are the form of the metric and the dilaton in Einstein frame. But since we have a

non-trivial dilaton in the lowest order, the form of the metric will be different in the string

frame. We will give the form of the metric in the string frame. The reason behind this is
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that the α′ correction terms are explicitly known [26 – 28] in the string frame. If we write

the string frame metric and the dilaton as

ds2 = −dt2 + t2p′
3

∑

i=1

(dxi)2 + t2q′dR2
6

e2φ ∼ t2γ′
(2.12)

then the two solutions given above in (a) and (b) take the form in string frame as,

(i′) p′ = q′ = −1/3, and γ′ = −2

(ii′) p′ = − 1√
3
, q′ = 0, and γ′ = −1

2

(

1 +
1√
3

)

(2.13)

We will study the stringy corrections to these backgrounds in the next section.

3. Alpha-prime corrections

Although we had discussed S-branes in type II theories in the previous section, here we

will restrict ourselves to the special case of heterotic string background. Since the S2-brane

we described in (2.5) is chargeless, it is also a solution to the heterotic string theory. The

reason for this restriction is that it is the heterotic string theory which contains a non-trivial

α′ correction term in the form of Gauss-Bonnet term, whereas, in type II string theory the

first non-trivial correction comes at α′3 order [26 – 28] and so the calculation becomes more

involved. First we will discuss the case where the dilaton is constant in the lowest order.

3.1 Constant lowest order dilaton and the cosmologies:

We first investigate the special case of heterotic backgrounds where the dilaton is constant

in the lowest order.

ds2 = −dt2 + A(t)2
3

∑

i=1

(dxi)2 + B(t)2
9

∑

j=4

(dxj)2 (3.1)

Note here that the metric has the isometry R+ × SO(3) × SO(6) and the time coordinate

range 0 ≤ t ≤ ∞. The string coupling gs is taken to be very small, so we shall neglect string

loop corrections. One can take the xj ’s to be the coordinates on some compact Ricci-flat

six-manifold but here we take it to be simple toroidal case. Thus in this solution dilaton

does not vary at least in the lowest order, while tensor and gauge fields are switched off.

We substitute the above ansatz in the action (which is basically the Einstein-Hilbert action

since the dilaton is constant) and then minimise the resulting action with respect to A and

B. The metric in (3.1) solves vacuum Einstein equations with

(i) A(t) = t5/9, B(t) = t−1/9

(ii) A(t) = t−1/3, B(t) = t1/3 (3.2)

Note that this is precisely the solution we obtained in cases (i) and (ii) in (2.9). This is not

surprising since (2.9) also represents the solutions to the vacuum Einstein equation in ten
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dimensions (note that these solutions are obtained from (2.5) when the dilaton is constant

and the form field is put to zero). However, we note that for both the solutions there is

an essential singularity at t = 0, where Riemann tensor blows up. The scalar curvature R

vanishes identically on-shell, but the contractions like

RMNPQRMNPQ ∼ 1

t4

blow up at the singularity. Since the latter term appears as the leading world sheet cor-

rection in the heterotic string theory it becomes imperative to include them in the string

action. However, as soon as we include the higher order α′ correction terms it is not true

that the dilaton will still remain constant3 [29]. So, we have to consider the full heterotic

string effective action including the dilaton in the leading order of α′ and is given by [27, 28]

S =
1

2κ2

∫

d10x
√−gΦ

[

R + 4(∂φ)2

+
α′

8

(

R2
GB − 16(GMN∂Mφ∂Nφ −∇2φ(∂φ)2 + (∂φ)4)

)

]

(3.3)

Here R2
GB = RMNPQRMNPQ − 4RMNRMN + R2 is the Gauss-Bonnet term, Φ ≡ e−2φ is

defined for simplicity and GMN = RMN − gMN (R/2) is the Einstein’s tensor. Note that

(3.2) is still a solution to the above action (3.3) in the leading order. Now the various field

equations with α′ terms will be solved order by order in the neighborhood of these leading

order solutions (i) and (ii). Let us plug the ansatz (3.1) in the above action (3.3) to get,

S ∼
∫

dt

[

6Φ
(

AB6Ȧ2 + 5A3B4Ḃ2 + 6B5A2ḂȦ
)

+6Φ̇
(

2A3B5Ḃ + A2B6Ȧ
)

+ ΦA3B6 Φ̇2

Φ2

]

+α′
[

Φ
(

15B2A3Ḃ4 + 60B3A2Ḃ3Ȧ + 45B4AḂ2Ȧ2 + 6B5ḂȦ3
)

+Φ̇
(

20B3A3Ḃ3 + B6Ȧ3 + 45B4A2ȦḂ2 + 18B5AȦ2Ḃ
)

+
1

2
Φ

{

(

15A3B4Ḃ2 + 18A2B5ȦḂ + 3AB6Ȧ2
) Φ̇2

Φ2

− 1

2

(

A2B6Ȧ + 2A3B5Ḃ
) Φ̇3

Φ3
+

1

12
A3B6 Φ̇4

Φ4

}]

(3.4)

Note that the total derivative terms in (3.4) have been dropped since they do not contribute

to the equations of motion. It can be noted that leading order terms are quadrartic in time

derivatives while next order terms have up to four derivatives in them. The equations of

motion for the various fields can be straightforwardly obtained from the variation of the

3By the same token one might think that the NSNS field H[3] also can not remain zero once the α
′

corrections are included. Indeed they can be generated via the gravitational Chern-Simons term. But it

can be easily checked that for the Kasner backgrounds the Chern-Simons term is in fact vanishing and so,

we can consistently put it to zero. We thank Qasem Exirifard for very useful comments which made us

rethink on this.
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above action with respect to A(t), B(t) and Φ(t) and they are given respectively as,

3B4

Φ

(

30Φ2A2Ḃ2+12ΦBA
(

2ΦḂȦ+A
(

Φ̇Ḃ+ΦB̈
))

+B2
(

2Φ2Ȧ2−A2
(

Φ̇2−2ΦΦ̈
)

+4ΦA
(

Φ̇Ȧ + ΦÄ
) ))

+ α′
[

3B2

8Φ3

(

360Φ4A2Ḃ4 + 480Φ3BAḂ2
(

2ΦḂȦ

+A
(

Φ̇Ḃ + ΦB̈
))

+ B4
(

A2
(

Φ̇4 − 2ΦΦ̇2Φ̈
)

+ 8ΦAΦ̇
(

−Φ̇2Ȧ + 2ΦȦΦ̈ + ΦΦ̇Ä
)

+4Φ2Ȧ
(

Φ̇2Ȧ + 2ΦȦΦ̈ + 4ΦΦ̇Ä
))

+ 60Φ2B2Ḃ
(

6Φ2ḂȦ2 + A2
(

Φ̇2Ḃ + 2ΦḂΦ̈

+4ΦΦ̇B̈
)

+4ΦA
(

3Φ̇ḂȦ+2ΦȦB̈+ΦḂÄ
))

+24ΦB3
(

A2Φ̇
(

− Φ̇2Ḃ+2ΦḂΦ̈+ΦΦ̇B̈
)

+2ΦA
(

Φ̇2ḂȦ + 2ΦḂȦΦ̈ + 2ΦΦ̇
(

ȦB̈ + ḂÄ
))

+2Φ2Ȧ
(

3Φ̇ḂȦ + Φ
(

ȦB̈ + 2ḂÄ
))))

]

= 0

(3.5)

6B3A

Φ

(

20Φ2A2Ḃ2+10ΦBA
(

3ΦḂȦ+A
(

Φ̇Ḃ+ΦB̈
))

+B2
(

6Φ2Ȧ2−A2
(

Φ̇2−2ΦΦ̈
)

+6ΦA
(

Φ̇Ȧ + ΦÄ
)))

+ α′
[

3B

4Φ3

(

120Φ4A3Ḃ4 + 240Φ3BA2Ḃ2
(

3ΦḂȦ

+A
(

Φ̇Ḃ+ΦB̈
))

+B4
(

A3
(

Φ̇4 − 2ΦΦ̇2Φ̈
)

+24Φ3Ȧ2
(

Φ̇Ȧ+ΦÄ
)

+ 12ΦA2Φ̇
(

−Φ̇2Ȧ

+2ΦȦΦ̈+ΦΦ̇Ä
)

+12Φ2AȦ
(

Φ̇2Ȧ+2ΦȦΦ̈+4ΦΦ̇Ä
))

+40Φ2B2AḂ
(

18Φ2ḂȦ2

+A2
(

Φ̇2Ḃ+2ΦḂΦ̈+4ΦΦ̇B̈
)

+ 6ΦA
(

3Φ̇ḂȦ+2ΦȦB̈+ΦḂÄ
))

+20ΦB3
(

6Φ3ḂȦ3

+A3Φ̇
(

−Φ̇2Ḃ + 2ΦḂΦ̈ + ΦΦ̇B̈
)

+ 3ΦA2
(

Φ̇2ḂȦ + 2ΦḂȦΦ̈ + 2ΦΦ̇
(

ȦB̈ + ḂÄ
))

+6Φ2AȦ
(

3Φ̇ḂȦ + Φ
(

ȦB̈ + 2ḂÄ
))))

]

= 0

(3.6)

B4A

Φ2

(

30Φ2A2Ḃ2+12ΦBA
(

3ΦḂȦ+A
(

Φ̇Ḃ+ΦB̈
))

+B2
(

6Φ2Ȧ2−A2
(

Φ̇2−2ΦΦ̈
)

+6ΦA
(

Φ̇Ȧ+Φ̇Ä
)))

+α′
[

B2

8Φ4

(

360Φ4A3Ḃ4+480Φ3BA2Ḃ2
(

3ΦḂȦ + A
(

Φ̇Ḃ

+ΦB̈
))

+B4
(

A3
(

− 3Φ̇4+4ΦΦ̇2Φ̈
)

+ 24Φ3Ȧ2
(

Φ̇Ȧ+ΦÄ
)

−6ΦA2Φ̇
(

− 2Φ̇2Ȧ+2ΦȦΦ̈.

+ΦΦ̇Ä
)

+24Φ2AȦ
(

− Φ̇2Ȧ+ΦȦΦ̈+2ΦΦ̇Ä
))

+120Φ2B2AḂ
(

9Φ2ḂȦ2+A2
(

−Φ̇2Ḃ

+ΦḂΦ̈ + 2ΦΦ̇B̈
)

+ 3ΦA
(

3Φ̇ḂȦ + 2ΦȦB̈ + ΦḂÄ
))

+ 12ΦB3
(

12Φ3ḂȦ3

+A3Φ̇
(

2Φ̇2Ḃ − 2ΦḂΦ̈ − ΦΦ̇B̈
)

+ 12ΦA2
(

−Φ̇2ḂȦ + ΦḂȦΦ̈ + ΦΦ̇
(

ȦB̈ + ḂÄ
))

+12Φ2AȦ
(

3Φ̇ḂȦ + Φ
(

ȦB̈ + 2ḂÄ
))))

]

= 0

(3.7)
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The corrected solutions are obtained by taking the perturbative ansatz

A(t) = A0(t) + α′A1(t) + O(α′2),

B(t) = B0(t) + α′B1(t) + O(α′2),

Φ(t) = Φ0(t) + α′Φ1(t) + O(α′2) (3.8)

where we take A0, B0 and Φ0 as the known lowest order solutions. Note that in this case the

zeroth order dilaton is constant and so, Φ0 = constant. We remark that the perturbative

ansatz are good only in the time region where α′A1(t) ≪ A0(t) , α′B1(t) ≪ B0(t) and

α′Φ1(t) ≪ Φ0(t). The moment these bounds are violated we will be making wrong move.

As we will see that the perturbative ansatz are good particularly in the asymptotic regions.

By substituting (3.8) in (3.5), (3.6) and (3.7) it is easy to see that to zeroth order in

α′, these equations take the forms

15A2
0Ḃ

2
0 + 6A0B0

(

2Ȧ0Ḃ0 + A0B̈0

)

+ Ȧ2
0B

2
0 + 2A0Ä0B

2
0 = 0

10A2
0Ḃ

2
0 + 5A0B0

(

3Ȧ0Ḃ0 + A0B̈0

)

+ 3Ȧ2
0B

2
0 + 3A0Ä0B

2
0 = 0

5A2
0Ḃ

2
0 + 2A0B0

(

3Ȧ0Ḃ0 + A0B̈0

)

+ Ȧ2
0B

2
0 + A0Ä0B

2
0 = 0 (3.9)

Case(i). Let us first take the case when A0(t) = t5/9, B0(t) = t−1/9 and Φ0(t) = Φ0 =

constant as in the case (i) which solve (3.9). Now substituting (3.8) with these values of

A0, B0 and Φ0 in (3.5), (3.6) and (3.7) we get three equations at the order α′ involving

A1(t), B1(t) and Φ1(t) as follows,

5

81

1

t
32
9

+
1

t
5
9

(

4

3
Φ̇1 + 6Ḃ1 + 6Ȧ1

)

+ t
4
9

(

3Φ̈1 + 18B̈1 + 6Ä1

)

= 0

35

81

1

t
26
9

+ t
1
9

(

10

3
Φ̇1 + 15Ḃ1 + 15Ȧ1

)

+ t
10
9

(

3Φ̈1 + 15B̈1 + 9Ä1

)

= 0

115

729

1

t3
+

(

Φ̇1 +
16

3
Ḃ1 +

14

3
Ȧ1

)

+ t
(

Φ̈1 + 6B̈1 + 3Ä1

)

= 0 (3.10)

A1(t), B1(t) and Φ1(t) can be solved from (3.10) and we find,

A1(t) = − 775

13122
t−

13
9 ,

B1(t) =
10

6561
t−

19
9 ,

Φ1(t) =
1

g2
s

115

1458
t−2 (3.11)

Note, as we mentioned earlier, that even though the lowest order Φ i.e. Φ0 was kept

constant, higher order correction makes the dilaton non-trivial. Thus the complete solution

up to first order in α′ is:

A(t) = t
5
9

(

1 − 775

13122

α′

t2

)

, B(t) = t−
1
9

(

1 +
10

6561

α′

t2

)

, Φ(t) =
1

g2
s

(

1 +
115

1458

α′

t2

)

(3.12)
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where we have taken Φ0 = constant = 1/g2
s ≫ 1. Now the metric and the dilaton becomes,

ds2 = −dt2 + t
10
9

(

1 − 775

6561

α′

t2

) 3
∑

i=1

(dxi)2 + t−
2
9

(

1 +
20

6561

α′

t2

) 9
∑

j=4

(dxj)2

e2φ = g2
s

(

1 − 115

1458

α′

t2

)

(3.13)

From the above we notice that the α′ corrections are such that the metric components

involving A(t) identically vanish at some time t = ta. The quantity ta can be obtained by

taking A(t)2|t=ta = 0 in (3.13), we get

ta =

√

775

6561

√
α′ . (3.14)

While the determinant of the metric is

Det(−g) = t2
(

1 − 245

729

α′

t2

)

+ O(α′2)

which vanishes for t = tg where

tg =

√

245α′

729
.

Note that we have tg > ta. Thus the metric becomes degenerate at a finite time interval

tg away from t = 0. The t ≫ tg is the region where our perturbative calculation could be

trusted. While for t ≤ tg the perturbative analysis will break down. Also, in other words,

the physics becomes fuzzy from the supergravity point of view. However we still need to

evaluate various curvature quantities to see if those remain finite at t > tg. If that is the

case we can say that t ≃ tg is some kind of a ‘horizon of time’ behind that a cosmological

singularity is hidden. Some of these quantities are listed below

R = −230

243

α′

t4
+ O(α′2)

RMNPQRMNPQ =
1840

729t4
+ O(α′)

RMNRMN = 0 + O(α′)

R2
GB =

1840

729t4
+ O(α′) (3.15)

By looking at the above expressions we find for t > tg all these quantities stay finite and

well defined. The actual singularity is at t = 0 where these quantities will blow up. But,

strictly speaking, these expressions are not valid when t ≤ tg. and we cannot make any

firm conclusion on the nature of the singularity. But for t > tg the spacetime makes perfect

sense.

Case(ii). Let us next look at the other solution when A0(t) = t−1/3, B0(t) = t1/3 and Φ0

= constant as in the case (ii) which also solve (3.9). Again using (3.8) with these values

– 9 –
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of A0, B0 and Φ0 in (3.5), (3.6) and (3.7) we get three equations at the order α′ involving

A1(t), B1(t) and Φ1(t) as follows,

5

9

1

t
8
3

+ t
1
3

(

4Φ̇1 + 30Ḃ1 + 6Ȧ1

)

+ t
4
3

(

3Φ̈1 + 18B̈1 + 6Ä1

)

= 0

7

9

1

t
10
3

+
1

t
1
3

(

2Φ̇1 + 15Ḃ1 + 3Ȧ1

)

+ t
2
3

(

3Φ̈1 + 15B̈1 + 9Ä1

)

= 0

1

3

1

t3
+

(

Φ̇1 + 8Ḃ1 + 2Ȧ1

)

+ t
(

Φ̈1 + 6B̈1 + 3Ä1

)

= 0

(3.16)

The solutions to the above two equations (3.16) are,

A1(t) = − 1

54
t−

7
3 , B1(t) = − 1

27
t−

5
3 , Φ1(t) =

1

g2
s

1

6t2
(3.17)

So, the corrected solution upto first order in α′ is

A(t) = t−
1
3

(

1 − 1

54

α′

t2

)

, B(t) = t
1
3

(

1 − 1

27

α′

t2

)

, Φ(t) =
1

g2
s

(

1 +
α′

6t2

)

(3.18)

Here there appears to be more than one horizon. The outer most horizon is obtained by

solving B(tb)
2 = 0. It gives

tb =

√

2α′

27
(3.19)

We obtain the inner horizon at t = ta where A(ta)
2 = 0. But,

Det(−g) = t2
(

1 − 5

9

α′

t2

)

+ O(α′2)

and the determinant becomes degenerate for t = tg =
√

5α′

9 and once again note that

tg > tb > ta.

The curvature invariants are evaluated as

R = −2
α′

t4
+ O(α′2)

RMNPQRMNPQ =
16

3t4
+ O(α′)

RMNRMN = 0 + O(α′)

R2
GB =

16

3t4
+ O(α′) . (3.20)

With α′ corrections included the backgrounds are no longer Ricci-flat. But these quantites

stay finite for t > tg. So it can be concluded that higher derivative corrections for the simple

Kasner geometries are very important in the neighborhood of t = tg. First they resolve

the cosmological singularity by hiding the singularity behind the time horizon. It is much

like as we find a stretched horizon at string length away from the naked singularity for the

BPS black holes which have vanishing horizon area classically. Had we got it differently, we
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would have been a bit disappointed. The conclusions are naive, that it is meaningless in the

low energy supergravity set up to talk of the cosmological events (decay or creation) whose

lifespan is smaller than string time
√

α′. Second, in order to discuss or resolve space-like

singularities, for example a Big-bang, we need to employ full string theory.

Specially, for both the pure Kasner geometries above we had string coupling fixed at

very low value. But for other backgrounds the dilaton will generally vary in time and the

string coupling may become very large at t = 0.

3.1.1 Spontaneous compactification

It is worth noting that the α′ corrected solutions for large t, i.e. when t ≫
√

α′, do become

usual Kasner solutions. The sizes and radii of the spatial directions change with time for

the Kasner solutions. Particularly in the case (i), for large t the size of the six-dimensional

space becomes naturally small and so it can be compactified. We compactify it on T 6 and

find that the corresponding 4-dimensional Einstein metric becomes

ds2 = g−2
s

(

−dτ2 + a(t)2
(

(dx1)2 + (dx2)2 + (dx3)2
))

(3.21)

where τ = 3
2t

2
3 (1 − 15

6561
α′

t2
) + O(α′2) and a(t) = t

2
9 (1 − 755

2·6561
α′

t2
). The 4-dimesional dilaton

is

e2φ4 = g2
s t

6
9

(

1 +
20

6561

α′

t2

)−3

plus there is volume modulus from compactification. From this we determine that the scale

factor

a(τ) =

(

2

3
τ

)1/3 (

1 − 745

388

α′

τ3

)

+ O(α′2). (3.22)

So we can now evaluate the Hubble rate

H =
1

a

da

dτ
=

1

3τ

(

1 +
745

432

α′

τ3

)

+ O(α′2). (3.23)

and the deceleration rate

1

a

d2a

dτ2
= −

(

2

9
+

3725

1944

α′

τ3

)

1

τ2
+ O(α′2). (3.24)

Since we have horizon at t = tg =
√

245α′

729 which corresponds to τ3
g ≃ 1.13α′. As we see

ä < 0, the cosmological expansion at late times, i.e. for τ3 > α′, is always decelerating

one. From the eq. (3.23) we see that the corrections tend to improve the Hubble rate such

that the quantity
(

1
3 + 745

3·432
α′

τ3

)

∼ .38 when τ3 = 11.3α′. Also the deceleration rate is such

that it initially decelerates faster than 2
9 if the corrections are included. In fact we can

calculate the corrected deceleration rate as
(

2
9 + (1.92)(.089)

)

∼ 0.24 which is very close to

the value for radiation dominated phase of the universe. It appears as if the universe was

decelerating faster, as in the radiation dominated phase, initially.
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3.2 O(α′)2 corrections

It is straightforward to evaluate more higher order corrections to the solutions. Note that

the heterotic action does not receive any O(α′2) corrections for the Kasner background we

have chosen [27]. Nevertheless, we can obtain the corrections in the solutions by solving

equations to second order in α′. So we take the ansatz

A(t) = A0(t) + α′A1(t) + α′2A2(t) + O(α′3),

B(t) = B0(t) + α′B1(t) + α′2B2(t) + O(α′3),

Φ(t) = Φ0(t) + α′Φ1(t) + α′2Φ2(t) + O(α′3) (3.25)

where we take A0, B0,Φ0, A1, B1,Φ1 as the known lower order solutions worked out in the

previous section. As an illustration we consider the case of the background (i), but similar

computation can be done for the background (ii) also. Substituting these ansatze in the

equations (3.5), (3.6) and (3.7) and collecting the coefficients of α′2 terms and equating

them to zero, we find three equations involving A2(t), B2(t) and Φ2(t). Solving those

equations we obtain the second order corrections. The complete corrected solutions upto

order α′2 are

A(t) = t
5
9

(

1 − 775

13122

α′

t2
− 2125975

172186884

α′2

t4

)

+ O(α′3),

B(t) = t−1/9

(

1 +
10

6561

α′

t2
+

89975

172186884

α′2

t4

)

+ O(α′3),

Φ(t) = g−2
s

(

1 +
115

1458

α′

t2
+

51625

2125764

α′2

t4

)

+ O(α′3) (3.26)

Similarly the curvature and the Gauss-Bonnet term become

R =
1

t2

(

−230

243

α′

t2
− 482075

531441

α′2

t4
+ O(α′3)

)

R2
GB =

1

t4

(

1840

729
+

1320800

531441

α′

t2
+ O(α′2)

)

RMNRMN =
68350

177147

α′

t6
+ O(α′2)

RMNPQRMNPQ =
1

t4

(

1840

729
+

1320800

531441

α′

t2
+ O(α′2)

)

(3.27)

We can see that this expansion could be arranged as powers of α′

t2
. Also the coefficients do

not change signs as we go up higher in the order.

Let us also note that the complete on-shell action upto second order corrections can

now be expressed as

S ∼
∫

dt
1

t

[ ∞
∑

n=0

an

(

α′

t2

)n
]

(3.28)

where some of the calculated coefficients are a0 = 0, a1 = −460
729 , a2 = −287075

531441 . The series

appears to be convergent.
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3.3 Non-constant lowest order dilaton

Having studied the Kasner solutions with the lowest order dilaton taken to be constant in

the previous subsections we would like to evalaute the higher derivative corrections to the

time-dependent heterotic Sp-brane solutions with non-constant lowest order dilaton field.

The complete action upto α′ order has been given in (3.3). Using the same metric ansatz in

the action we get the same equations of motion (3.5), (3.6) and (3.7). However since in this

case the lowest order dilaton is non-constant, the zeroth order equation in α′ will involve

Φ0 and its derivatives unlike the similar equations (3.9) in the previous case. Substituting

(3.8) in (3.5), (3.6) and (3.7) we get the zeroth order equations in the form,

30Φ2
0A

2
0Ḃ

2
0 + 12Φ0B0A0

(

2Φ0Ḃ0Ȧ0 + A0

(

Φ̇0Ḃ0 + Φ0B̈0

))

+B2
0

(

2Φ2
0Ȧ

2
0 − A2

0

(

Φ̇2
0 − 2Φ0Φ̈0

)

+ 4Φ0A0

(

Φ̇0Ȧ0 + Φ0Ä0

))

= 0

20Φ2
0A

2
0Ḃ

2
0 + 10Φ0B0A0

(

3Φ0Ḃ0Ȧ0 + A0

(

Φ̇0Ḃ0 + Φ0B̈0

))

+B2
0

(

6Φ2
0Ȧ

2
0 − A2

0

(

Φ̇2
0 − 2Φ0Φ̈0

)

+ 6Φ0A0

(

Φ̇0Ȧ0 + Φ0Ä0

))

= 0

30Φ2
0A

2
0Ḃ

2
0 + 12Φ0B0A0

(

3Φ0Ḃ0Ȧ0 + A0

(

Φ̇0Ḃ0 + Φ0B̈0

))

+B2
0

(

6Φ2
0Ȧ

2
0 − A2

0

(

Φ̇2
0 − 2Φ0Φ̈0

)

+ 6Φ0A0

(

Φ̇0Ȧ0 + Φ̇0Ä0

))

= 0 (3.29)

Now it can be easily checked that both the solutions given in eqs.(2.12) (2.13) indeed solve

the above equations (3.29) as they should. Substituting the first solution (i′) of (2.13) in

(3.29) we get three equations at the order α′ involving A1(t), B1(t) and Φ1(t) as follows,

− 6560

729t8/3
+

88Φ1

t14/3
+

64B1

81t1/3
+

64A1

243t1/3
− 40Φ̇1

t11/3
+

320

27
t2/3Ḃ1 +

320

81
t2/3Ȧ1

+
6Φ̈1

t8/3
+

64

9
t5/3B̈1 +

64

27
t5/3Ä1 = 0

13120

729t8/3
+

176Φ1

t14/3
+

320B1

243t1/3
+

64A1

81t1/3
− 80Φ̇1

t11/3
+

1600

81
t2/3Ḃ1 +

320

27
t2/3Ȧ1

+
12Φ̈1

t8/3
+

320

27
t5/3B̈1 +

64

9
t5/3Ä1 = 0

−1070

9t7
+

162Φ1

t9
− 567Φ̇1

8t8
+

16Ḃ1

t11/3
+

8Ȧ1

t11/3
+

81Φ̈1

8t7
+

12B̈1

t8/3
+

6Ä1

t8/3
= 0 . (3.30)

The equations (3.30) can be solved and we find,

A1(t) = B1(t) =
755

54
t−

7
3 Φ1(t) = −

(

2

3

)4 2375

18
t2 (3.31)

So, the complete solution upto first order in α′ is

A(t) = B(t) = t−
1
3

(

1 +
755

54

α′

t2

)

, Φ(t) =

(

2

3
t

)4 (

1 − 2375

18

α′

t2

)

(3.32)

– 13 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
7

It is interesting to note that the α′ corrections do not break the SO(9) invariance of the

original solution given in (i′) of (2.13). The other covariant quantities of interest are

Det(−g) =
1

t6

(

1 +
755

3

α′

t2

)

+ O(α′2)

R =
1

t2

(

16 +
28690

9

α′

t2

)

+ O(α′2)

RMNPQRMNPQ =
80

9t4
+ O(α′)

RMNRMN =
32

t4
+ O(α′)

R2
GB =

1232

9

1

t4
+ O(α′) . (3.33)

From the determinant of the metric we determine that there is a cut-off time t = tg below

which the calculations cannot be trusted, means perturbative approximation will break

down. It is given by

(tg)
2 =

755

3
α′ (3.34)

For the time range t > tg all the curvature expressions stay finite. For large time all the

α′ corrections to the solution become negligible and the asymptotic generalized Kasner

background emerges.

By using the similar technique we can also obtain the corrections of the second solution

(ii′) of (2.13). We here give the complete solution as,

A(t) = t
− 1√

3

{

1 +

(

111 + 80
√

3

72

)

α′

t2

}

B(t) = 1 +

(

14 + 9
√

3

8

)

α′

t2

Φ(t) = t

“

1+ 1√
3

”

{

1 −
(

365 + 236
√

3

24

)

α′

t2

}

(3.35)

The other quantities of interest are

Det(−g) = t−2
√

3

{

1 +

(

121(
√

3 + 2)

4
√

3

)

α′

t2

}

+ O(α′2)

R =
1

t2

(

4 + 2
√

3
)

+

(

1895 + 1126
√

3

6

)

α′

t4
+ O(α′2)

RMNPQRMNPQ =
1

3t4

(

20 + 8
√

3
)

+ O(α′)

RMNRMN =
1

t4

(

8 + 4
√

3
)

+ O(α′)

R2
GB =

8

3t4

(

1 +
√

3
)

+ O(α′) (3.36)
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We again find from the determinant of the metric that the cut-off time in this case is given

by

t2g =
121(

√
3 + 2)

4
√

3
α′ (3.37)

below which the perturbative approximation will break down. However, for t > tg the

curvature invariants remain finite. For large time we again recover the generalized Kasner

form of the background.

As indicated in the case of cosmologies with the constant lowest order dilaton studied

in the previous subsections, here also the more higher order α′ corrections can be computed.

The general comments about the spontaneous compactification as well as the improvement

on the deceleration rate remain more or less similar in this case also.

4. Summary

In this paper we have studied the α′ corrections to a class of time dependent solutions called

space-like or S-branes in string theory. S-branes generically have a space-like singularity

at t = 0. The near ‘horizon’ or near t = 0 limit of these S-branes have the structure of the

generalized Kasner geometry which are the global solutions of string theory with singularity

at t = 0. Since for these solutions curvature blows up at t = 0, we have included the higher

order curvature terms or the α′ correction terms to see their effects on the geometry. We

have considered the heterotic string theory Sp-brane solutions since for this case the exact

correction terms upto α′2 order are known. This is in contrary to the type II string theory,

where the first non-trivial correction comes at the order of α′3 and the calculation becomes

quite involved. We have used both the constant lowest order dilaton i.e. the usual Kasner

like solutions and the non-constant dilaton i.e. the generalized Kasner like solutions. In

both cases we found the corrected geometries when the α′ corrections are included in the

action. The interesting thing is that by obtaining the corrections, we are able to determine

the time t = tg when the curvature starts becoming large for the cases we have studied.

For the time t > tg the spacetime is finite and supergravity is a valid approximation. In

the regime t ≤ tg the spacetime curvature becomes higher and string theory is the only

valid description there. Although, the Sp-brane backgrounds we have studied exist only

for t > 0, it will be nevertheless interesting to study those solutions which are explicitly

time-reversal symmetric.

While studying spontaneous compactification we find that the Kasner cosmologies

are generally decelerating as usual, but the deceleration is faster initially and could be

made close to value in the radiation dominated phase of our universe if the higher order

corrections are included.

Note added:

After submission of this paper to the Archive we received a very useful correspondence

from Qasem Exirifard in which he drew our attention to some of the issues we were not

aware of. This has helped us, we hope, to improve our paper.
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